
1. Languages, Abstract Machines and 
Execution models 
Slides: ​03 Languages, Abstract machines, and Execution models 

Programming Languages 

A programming language is defined by: 

● syntax (the form of the program) 
● semantics (meaning of the program): how is expected to behave 
● pragmatics (conventions and guidelines): how is intended to be used in 

practise. 

Paradigms: styles of programming. 
● Imperative: variables, commands, procedures. 
● Object-oriented: objects, methods, classes. 
● Concurrent: processes, communication. 
● Functional: values, expressions, functions. 
● Logic: assertions, relations. 

Implementation of a PL 
Every language L implicitly defines an Abstract Machine ML having L as machine 
language. Implementing ML on an existing host machine M0 (via compilation, 
interpretation or both) makes programs written in L executable. 

Abstract Machines 

An Abstract Machine ML for L is a collection of data structures and algorithms which 
can perform the storage and execution of programs written in L. 

Java Virtual Machine 
● Language: bytecode 
● Memory: Heap + Stack + Permanent 
● Interpreter 
● Operations and Data Structures for: 

○ Primitive data processing 
○ Sequence control 

https://github.com/md-cs-student-unipi/Advanced-Programming/blob/master/03-Languages-Abstract-machines-Execution-models.pdf


○ Data transfer control 
○ Memory management 

Execution models 

Pure Interpretation 
ML is interpreted over M0: every instruction of ML is translated in real time into a (set 
of) instruction of M0. 

Is not very efficient, but allows to run programs on-the-go, facilitating interactive 
debugging and testing. 

Pure Compilation 
Programs written in L are translated into equivalent programs written in L0, the 
machine language of M0. 

The translated programs can be executed directly on M0, hence ML is not realized at 
all. 
The execution is more efficient, but the produced code is larger. Every time we 
change the code we must recompile it. 

Compilation allows aggressive hardware optimization to exploit hardware features. 

After the compilation, the linking phase binds the libraries to the translated code and 
pack everything into an executable. 

Case studies 
● C++ has a pre-processor that compiles C++ into C code, then the C code is 

compiled. 
● JVM exploits both compilation and interpretation: the Java code is compiled 

into bytecode, interpreted by the Java Virtual Machine. 
● Similarly, Microsoft compiles all its languages (C#, J#, F#, VisualBasic.NET, 

...) into a Common Intermediate Language (CIL) that runs on a Common 
Language Interpreter (CLI). 

● Virtual Machines, such as JVM and CLI, uses Dynamic Linking: the linking is 
executed when needed at runtime instead of at compile time. 

 


