
5. Functional Programming
Slides:

● 17 Functional Programming
● 18 Lambda and Laziness

The key idea: do everything by composing functions

● no mutable state
● no side effects
● (no fun, IMHO)

Main Concepts

● 1st class and high-order functions: functions can be denoted, passed as
argument to other functions and returned as result

● Recursion instead of iteration
● Powerful list facilities
● Polymorphism: universal parametric implicit
● Data structures cannot be modified, them must be recreated

ML family

Meta-language. Includes: Standard ML, Caml, OCaml, F#.

Features:

● Type safe, with type inference and formal semantics
● Both compiled and interactive use
● Expression-oriented
● Higher order functions
● Anonymous functions: lambda
● Abstract data types
● Garbage collector
● Module system
● Exceptions
● Impure: allows side-effects

https://github.com/md-cs-student-unipi/Advanced-Programming/blob/master/17-Functional-Programming.pdf
https://github.com/md-cs-student-unipi/Advanced-Programming/blob/master/18-Lambda-Laziness.pdf

Haskell

Features:

● Type checking and type inference (cast not allowed)
● Polymorphism: implicit parametric and ad hoc (overloading)
● Lazy evaluation
● Tail recursion and continuations
● Purely functional
● Variables are bound to expression, without evaluating them (lazy evaluation,

functions don't evaluate its arguments until them are needed)

Core Haskell
● Basic types

○ Unit
○ Boolean
○ Integer
○ Real
○ Character
○ String
○ Tuple
○ List
○ Record

● Patterns
● Declarations
● Functions
● Polymorphism
● Type declarations
● Type Classes
● Monads
● Exceptions

Laziness
Functions and data constructors don’t evaluate their arguments until they need them.

In several languages there are forms of lazy evaluation (if-then-else, shortcutting &&
and ||)

Lambda calculus

λx.t

Binding

An occurrence of x is free in a term t if it is not in the body of an abstraction λx. t,
otherwise it is bound. λx is a binder.
Example: in λx.λy.λz.(x+z) x and z are bound, y is free.

β-reduction
(λx.t) t' = t[t'/x]

Encode functions in λ
f(x,y) = <exp> ≡ f = λx.λy.<exp>

Parameter passing mechanism

● Applicative order evaluation: parameter are evaluated before applying the
function (eager evaluation, parameter passed by value).

● Normal order evaluation: functions evaluated first, arguments if and when
needed (parameter passed by name)

Parameter passing modes
● in | in/out | out

Parameter passing mechanisms
● value (in)

○ need (in): copy as an expression, evaluated the first time is needed.
○ name (in + out): same of call by need, but the parameter is evaluated

every time (substitution in the body)
● reference (in + out)

○ sharing (in/out): the value is copied, but the value is a reference. Is the
same of the call by value, but in the reference model.

● result (out)
● value/result (in + out)

Value vs reference

● Value copy the value into the variable (copy of data)
● Reference copy the reference to the value into the variable (shared data)

Reference vs pointer

● Reference to x: address of the cell in which is stored x
● Pointer to x: location containing the address (reference) of x

