
6. Haskell
Slides:

● 19 Haskell
● 20 Haskell type classes
● 21 Haskell Constructor classes and Monads

Data types
data​ ​Color​ ​=​ ​Red​ | ​Yellow​ | ​Blue

data​ ​Tree​ ​=​ ​Leaf​ ​Int​ | ​Node​ (​Int​, ​Tree​, ​Tree​)

Case expressions
case​ t ​of
 ​Leaf​ n ​->​ ​...
 ​Node​(n, lt, rt) ​->​ ​...

Function types

f :: A -> B​ means for every x ∈ A, if f(x) terminates, then f(x) ∈ B.

Higher order functions

Any curried function with more than one argument is higher-order: applied to one
argument it returns a function.

From functional to stream-like
length​(​tail​(​reverse​ [​1​,​2​,​3​])) ​=>​ ​2

becomes

[​1​,​2​,​3​] ​|>​ ​reverse​ ​|>​ ​tail​ ​|>​ ​length​ ​=>​ ​2

Map
Applies argument function to each element in a collection.

map​ (​+​1​) [​1​,​2​,​3​] ​=>​ [​2​,​3​,​4​]

https://github.com/md-cs-student-unipi/Advanced-Programming/blob/master/19-Haskell.pdf
https://github.com/md-cs-student-unipi/Advanced-Programming/blob/master/20-Haskell-Type-classes.pdf
https://github.com/md-cs-student-unipi/Advanced-Programming/blob/master/21-Haskell-Constructor-classes-Monads.pdf

Filter
Takes a collection and a boolean predicate, and returns the collection of the
elements satisfying the predicate.

filter​ ​even​ [​1​..​10​] ​=>​ [​2​,​4​,​6​,​8​,​10​]

Reduce
foldl​, ​foldr​, ​foldl'​, ​foldl1​ etc.

sum' xs ​=​ ​foldl​ (​\​acc x ​->​ acc ​+​ x) ​0​ xs

The difference between ​foldl​ and ​foldr​ is that the first start from the top, so is
applicable also to infinite lists, the second one requires a finite list. The difference
between ​foldl​ and ​foldl'​ is that the second one uses tail-recursion (see below) and
for that reason is more performant.

Recursion

Iteration and recursion are equally powerful in theoretical sense. Anyway, in general
a procedure call is much more expensive than a conditional branch, thus recursion is
in general less efficient.

Tail recursive functions

Non tail-recursive

int rfun​()​ {
 ​...
 ​return​ ​1​+​rfun​()​;
}

Tail recursive

int trfun​()​ {
 ​...
 ​return​ trfun​()​;
}

Example

Quadratic, non tail recursive

reverse​ ​[]​ ​=​ ​[]
reverse​ (x​:​xs) ​=​ (​reverse​ xs) ​++​ [x]

Can be rewritten with tail-recursion in linear time

reverse​ xs ​=
 ​let​ rev (​[]​, accum) ​=​ accum
 rev (y​:​ys, accum) ​=​ rev (ys, y​:​accum)
 ​in​ rev (xs, ​[]​)

Type classes

Provide concise types to describe overloaded functions.

Allow users to define functions using overloaded operations and to declare new
collections of overloaded functions.

A type class declaration defines a set of operations and gives the set a name.

Example: ​Eq a​ type class defines the operations ​==​ and ​\=​ with type ​a -> a -> Bool​.

Usage: ​member:: Eq w => w -> [w] -> Bool​.

Default type classes
● Eq​: equality
● Ord​: comparison
● Num​: numerical operations
● Show​: convert to string
● Read​: convert from string
● Enum​: operations on sequentially ordered types

Declaration
The class declaration says what the Num operations are.

class​ ​Num​ a ​where
 ​(+)​ ​::​ a ​->​ a ​->​ a
 ​(*)​ ​::​ a ​->​ a ​->​ a
 ​negate​ ​::​ a ​->​ a
 ​...

Instance
An instance declaration for a type Int says how the Num operations are implemented
on Int’s.

instance​ ​Num​ ​Int​ ​where
 a ​+​ b ​=​ intPlus a b
 a ​*​ b ​=​ intTimes a b
 ​negate​ a ​=​ intNeg a
 ​...

Default methods
Type classes can define default methods. Instance declaration can still override it by
providing a more specific definition. If an instance declaration doesn't provide a
method implementation, the default one is applied.

class​ ​Eq​ a ​where
 ​(==)​ ​::​ a ​->​ a ​->​ ​Bool
 x ​==​ y ​=​ ​not​ (x ​/=​ y)

 ​(/=)​ ​::​ a ​->​ a ​->​ ​Bool
 x ​/=​ y ​=​ ​not​ (x ​==​ y)

If is not necessary to override the default definition, deriving can be used.

Deriving

For ​Read​, ​Show​, ​Bounded​, ​Enum​, ​Eq​ and ​Ord​ the compiler can generate instance
declaration automatically.

data​ ​Color​ ​=​ ​Red​ | ​Green​ | ​Blue
 ​deriving​ (​Show​, ​Read​, ​Eq​, ​Ord​)

Under the hood
This

square​ ​::​ ​Num​ n ​=>​ n ​->​ n
square x ​=​ x ​*​ x

is compiled into this

square​ ​::​ ​Num​ n ​->​ n ​->​ n
square d x ​=​ ​(*)​ d x x

where the extra value argument d of the function is a value of data type Num n and
represents a dictionary of the required operations.

Furthermore, the compiler converts each type class declaration into a dictionary type
declaration and a set of selector functions. In other words, this

instance​ ​Num​ ​Int​ ​where
 a ​+​ b ​=​ intPlus a b
 a ​*​ b ​=​ intTimes a b
 ​negate​ a ​=​ intNeg a
 ​...

is compiled into this

dNumInt​ ​::​ ​Num​ ​Int
dNumInt ​=​ ​MkNum​ intPlus
 intTimes
 intNeg
 ​...

Compositionally

sumSq​ ​::​ ​Num​ n ​=>​ n ​->​ n ​->​ n
sumSq x y ​=​ square x ​+​ square y

becomes

sumSq​ ​::​ ​Num​ n ​->​ n ​->​ n ​->​ n
sumSq d x y ​=​ ​(+)​ d (square d x) (square d y)

Functor

A type class where the predicate is over a type constructors rather than on a type.

Example:

instance​ ​Functor​ ​Tree​ ​where
 ​fmap​ f (​Leaf​ x) ​=​ ​Leaf​ (f x)
 ​fmap​ f (​Node​(t1,t2)) ​=​ ​Node​(​fmap​ f t1, ​fmap​ f t2)

Monads

Constructor classes (type constructor) introducing operations for "putting a value into
a box" (​return​) and compose functions that return "boxed" values (bind: ​x >>= y​).

(>>=)​ ​::​ ​Maybe​ a ​->​ (a ​->​ ​Maybe​ b) ​->​ ​Maybe​ b

Functors with fmap allow to apply functions inside "boxes".

Haskell monads
● Maybe
● Error
● State
● IO
● lists (​[]​)
● Reader
● Writer

Maybe
data​ ​Maybe​ a ​=​ ​Nothing​ | ​Just​ a

A value of type ​Maybe a​ is a possibly undefined value of type ​a​.
A function ​f :: a -> Maybe b​ is a partial function from ​a​ to ​b​.

Main
main​::​[​Response​] ​->​ [​Request​]

IO
IO is a type constructor, instance of Monad. A value of type ​IO t​ is a computation or
"action" that, when performed, may do some input/output before delivering a result of
type t.

● return​ returns the value without making I/O
● Then (​>>​) and bind (​>>=​) composes two actions sequentially into a larger

action.

(>>=)​ ​::​ ​IO​ a ​->​ (a ​->​ ​IO​ b) ​->​ ​IO​ b

Binds the result of the left-hand action in the action on the right.

Evaluating an action has no effect, performing the action has the effect.
The only way to perform an action is to call it at some point, directly or indirectly,
from Main.main.

