
301AA	-	Advanced	Programming	

Lecturer:	Andrea	Corradini		 		
andrea@di.unipi.it	

h;p://pages.di.unipi.it/corradini/	
	

Course	pages:	
h;p://pages.di.unipi.it/corradini/Dida@ca/AP-18/	

		
	

AP-02:		Mo%va%ons	and	Introduc%on	



SoCware	is	Everywhere	



Programming	in	the	21	century 
•  SoCware	as	complex	as	ever	
•  Command	line	interface	not	enough	
•  Data	comes	from	mulKple	sources:	
structured	(DB)	and	unstructured	

•  Single	computer	not	enough	
•  SoCware	development	is	a	group	acKvity	
•  Deployment	on	Web	or	mobile	devices	



Complexity	Prompts	for	InnovaKon	

•  Object-Oriented	Programming	allows	ever	
larger	applicaKons	to	be	built	

•  But	limited	support	for	reuse	
•  OS	+	libraries	not	enough	
•  Reusable	components	are	needed	
•  MulK-Ker	applicaKons	development	increases	
the	choices	on	how	to	build	applicaKons	

	



Key	Ingredients	for	Complex	SoCware	

•  Advanced	features	extending	programming	
languages	

•  Component	models	to	ensure	reusability	
•  Frameworks	to	support	efficient	development	
of	(component	based)	applicaKons	

•  Execu9on	environments	providing	runKme	
support	for	ever	dynamic	soCware	systems	

5	



The	SoCware	Architect	

•  A	new	role	is	needed:	So;ware	Architect	
•  to	create,	define	or	choose	an	applica9on	framework	
•  to	create	the	component	design	according	to	a	
component	model	

•  to	structure	a	complex	applicaKon	into	pieces	
•  to	understand	the	interacKons	and	dependencies	
among	components	

•  to	select	the	execu9on	environment	/	pla>orm	based	
on	cost/performance	criteria	

•  to	organize	and	supervise	the	development	process	



What	are	Frameworks?	

•  So;ware	Framework:	A	collecKon	of	common	
code	providing	generic	func%onality	that	can	
be	selec%vely	overridden	or	specialized	by	user	
code	providing	specific	func%onality	

•  Applica9on	Framework:	A	soCware	
framework	used	to	implement	the	standard	
structure	of	an	applicaKon	for	a	specific	
development	environment	

 



Framework	Features	
•  Frameworks,	like	so(ware	libraries,	provide	reusable	
abstrac4ons	of	code	wrapped	in	a	well-defined	API	

•  But:	Inversion	of	control	
–  unlike	in	libraries,	the	overall	program's	flow	of	control	is	
not	dictated	by	the	caller,	but	by	the	framework 

•  Helps	solving	recurring	design	problems	
•  Drives	soluKon	

–  Provides	a	default	behavior	
–  Dictates	how	to	fill-in-the-blanks	

•  Non-modifiable	framework	code	
–  Extensibility:	usually	by	selecKve	overriding	

	



OO	SoCware	Framework	

•  Object-oriented	programming	frameworks	
consists	of	a	set	of	abstract	classes	

•  An	applicaKon	can	be	built	simply	inheriKng	
from	pre-exisKng	classes	in	the	framework	

•  InstanKaKon	of	a	framework	consists	of	
composing	and	subclassing	the	exisKng	classes	



Examples	of	Frameworks	

•  General	soCware	frameworks	
–  .NET	–	Windows	plagorm.	Provides	language	
interoperability	

– Android	SDK	–	Supports	development	of	apps	in	Java	
(but	does	not	use	a	JVM!)	

–  Spring	–	Cross-plagorm,	for	Java	applicaKons	
–  Cocoa	–	Apple’s	naKve	OO	API	for	macOS.	Includes	C	
standard	library	and	the	ObjecKve-C	runKme.	

–  Eclipse	–	Cross-plagorm,	easily	extensible	IDE	with	
plugins	

	



Examples	of	Frameworks	

•  Frameworks	for	ApplicaKon	with	GUI	
– MFC	-		MicrosoC	FoundaKon	Class	Library.	C++	
object-oriented	library	for	Windows.	

– Gnome	–	Wri;en	in	C;	mainly	for	Linux		

– Qt		-	Cross-plagorm;	wri;en	in	C++		



Examples	of	Frameworks	

•  Web	ApplicaKon	Frameworks	[based	on	
Model-View-Controller	design	pa;ern]	
– ASP.NET	by	MicrosoC	for	web	sites,	web	
applicaKons	and	web	services	

– GWT	-	Google	Web	Toolkit	(GWT)	
– Rails		-	Wri;en	in	Ruby	-	Provides	default	
structures	for	databases,	web	services	and	web	
pages.		

	



Examples	of	Frameworks	

•  Concurrency	
– Hadoop	Map/Reduce	-	soCware	framework	for	
applicaKons	which	process	big	amounts	of	data	in-
parallel	on	large	clusters	(thousands	of	nodes)	in	a	
fault-tolerant	manner.	

• Map:	Takes	input	data	and	converts	it	into	a	set	of	
tuples	(key/value	pairs).	

•  Reduce:	Takes	the	output	from	Map	and	combines	the	
data	tuples	into	a	smaller	set	of	tuples.		



Framework	Design	

•  Intellectual	Challenging	Task	
•  Requires	a	deep	understanding	of	the	
problem	domain	

•  Requires	mastering	of	so;ware	(design)	
paQerns,	OO	methods	and	polymorphism	in	
parKcular	

	



Design	Pa;erns	
•  General	conceptual	solu%ons	to	recurrent	design	
problems	

•  More	abstract	than	frameworks 
–  Frameworks	can	be	embodied	in	code,	but	only	examples	
of	pa;erns	can	be	embodied	in	code	

–  Design	pa;erns	explain	the	intent,	trade-offs,	and	
consequences	of	a	design 

•  Smaller	architectural	elements	than	frameworks 
–  A	typical	framework	contains	several	design	pa;erns	but	
the	reverse	is	never	true.	 

•  Less	specialized	than	frameworks	
–  Frameworks	always	have	a	parKcular	applicaKon	domain	
–  Design	pa;erns	can	be	used	in	nearly	any	kind	of	
applicaKon 



The	23	Design	Pa;erns	of	the	Gang	of	Four	

16	
3

Tabella dei pattern GoF

comportamentali

creazionali strutturali

Behavioural	

CreaKonal	 Structural	

Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides	
Design	Pa8erns:	Elements	of		Reusable		

Object-Oriented	So(ware	[1995]	
	



Course	objecKves	and	Syllabus	



Course	ObjecKves	
•  Understand	programming	language	technology:	

–  ExecuKon	Models	
–  Run-Kme	

•  Analyze	programming	metaphors:	
– Objects	
–  Components	
–  Pa;erns	

•  Learn	advanced	programming	techniques	
•  Present	state-of-the-art	frameworks	
incorporaKng	these	techniques	

•  PracKce	with	all	these	concepts	through	small	
projects 



Run-Kme	Systems	
•  Virtual	ExecuKon	Environment		

– Memory	Management		
–  Thread	Management		
–  ExcepKon	Handling		
–  Security		
– Debugging	Support		
– AOT	and	JIT	CompilaKon		
– Dynamic	Link/Load		
–  ReflecKon	
–  VerificaKon	

•  A	concrete	example:	the	JVM	



Component	Models	and	Frameworks	

•  Component-oriented	Programming	
•  JavaBeans	and	NetBeans	
•  Spring	and	Spring	Beans	
•  COM		
•  CLR	and	.NET	
•  OSGi	and	Eclipse	
•  Hadoop	Map/Reduce	



Advanced	Programming	Techniques	

•  Generic	Programming	
–  Java	Generics	
–  C++	templates	
–  C#	Generics	
–  Scala	generics	

•  Lambda	Calculus	and	FuncKonal	Programming	
–  Haskell	basics	
–  Type	classes	and	Monads	
– Metaprogramming	

•  FuncKonal	Programming	in	Java	8	
–  Lambdas	
–  Stream	API	

•  ScripKng	languages	and	Python	



Selected	Advanced	Concepts	in		
Programming	Language	

•  Overloading	and	Type	Classes	in	Haskell	
•  Closures	vs	Delegates	in	CLI	
•  Algebraic	data	types	and	AcKve	pa;erns	in	F#	
•  AssociaKve	arrays	in	scripKng	languages	
•  Ownership	and	borrowing	in	Rust	
•  Extensions	in	SwiC	



IEEE	Spectrum	Ranking	2018-2017	



IEEE	Spectrum	Ranking	2017-2016	


