301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

Course pages:
http://pages.di.unipi.it/corradini/Didattica/AP-18/

AP-02: Motivations and Introduction



Software is Everywhere

Software innovation

Customers Line of business Software development

0706 7 _©




Programming in the 21 century

Software as complex as ever
Command line interface not enough

Data comes from multiple sources:
structured (DB) and unstructured

Single computer not enough
Software development is a group activity
Deployment on Web or mobile devices



Complexity Prompts for Innovation

Object-Oriented Programming allows ever
larger applications to be built

But limited support for reuse
OS + libraries not enough
Reusable components are needed

Multi-tier applications development increases
the choices on how to build applications



Key Ingredients for Complex Software

Advanced features extending programming
languages

Component models to ensure reusability

Frameworks to support efficient development
of (component based) applications

Execution environments providing runtime
support for ever dynamic software systems



The Software Architect

A new role is needed: Software Architect
to create, define or choose an application framework

to create the component design according to a
component model

to structure a complex application into pieces

to understand the interactions and dependencies
among components

to select the execution environment / platform based
on cost/performance criteria

to organize and supervise the development process



What are Frameworks?

* Software Framework: A collection of common
code providing generic functionality that can
be selectively overridden or specialized by user
code providing specific functionality

* Application Framework: A software
framework used to implement the standard
structure of an application for a specific
development environment



Framework Features

Frameworks, like software libraries, provide reusable
abstractions of code wrapped in a well-defined API

But: Inversion of control

— unlike in libraries, the overall program's flow of control is
not dictated by the caller, but by the framework

Helps solving recurring design problems
Drives solution
— Provides a default behavior

— Dictates how to fill-in-the-blanks

Non-modifiable framework code
— Extensibility: usually by selective overriding



OO0 Software Framework

* Object-oriented programming frameworks
consists of a set of abstract classes

* An application can be built simply inheriting
from pre-existing classes in the framework

* |nstantiation of a framework consists of
composing and subclassing the existing classes



Examples of Frameworks

* General software frameworks

— .NET — Windows platform. Provides language
interoperability

— Android SDK — Supports development of apps in Java
(but does not use a JVM!)

— Spring — Cross-platform, for Java applications

— Cocoa — Apple’s native OO API for macOS. Includes C
standard library and the Objective-C runtime.

— Eclipse — Cross-platform, easily extensible IDE with
plugins



Examples of Frameworks

* Frameworks for Application with GUI

— MFC - Microsoft Foundation Class Library. C++
object-oriented library for Windows.

— Gnome — Written in C; mainly for Linux

—Qt - Cross-platform; written in C++



Examples of Frameworks

 Web Application Frameworks [based on
Model-View-Controller design pattern]

— ASP.NET by Microsoft for web sites, web
applications and web services

— GWT - Google Web Toolkit (GWT)

— Rails - Written in Ruby - Provides default
structures for databases, web services and web

pages.



Examples of Frameworks

* Concurrency

— Hadoop Map/Reduce - software framework for
applications which process big amounts of data in-
parallel on large clusters (thousands of nodes) in a
fault-tolerant manner.

 Map: Takes input data and converts it into a set of
tuples (key/value pairs).

* Reduce: Takes the output from Map and combines the
data tuples into a smaller set of tuples.



Framework Design

* Intellectual Challenging Task

* Requires a deep understanding of the
problem domain

e Requires mastering of software (design)
patterns, OO methods and polymorphism in
particular



Design Patterns

General conceptual solutions to recurrent design
problems
More abstract than frameworks

— Frameworks can be embodied in code, but only examples
of patterns can be embodied in code

— Design patterns explain the intent, trade-offs, and
conseqguences of a design

Smaller architectural elements than frameworks

— A typical framework contains several design patterns but
the reverse is never true.

Less specialized than frameworks
— Frameworks always have a particular application domain

— Design patterns can be used in nearly any kind of
application



The 23 Design Patterns of the Gang of Four

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

Design Patterns: Elements of Reusable
Object-Oriented Software [1995]

FM Creational Structural A
PT S Behavioural _CR CF D
AF ™ CD MD O IN PX FA
BU SR MM ST IT \" FL BR
ouis Stan ko Sat s it it Bridge

16




Course objectives and Syllabus



Course Objectives

Understand programming language technology:
— Execution Models

— Run-time

Analyze programming metaphors:
— Objects

— Components

— Patterns

Learn advanced programming techniques

Present state-of-the-art frameworks
incorporating these techniques

Practice with all these concepts through small
projects



Run-time Systems

* Virtual Execution Environment
— Memory Management
— Thread Management
— Exception Handling
— Security
— Debugging Support
— AOT and JIT Compilation
— Dynamic Link/Load
— Reflection
— Verification
* A concrete example: the JVM



Component Models and Frameworks

Component-oriented Programming
JavaBeans and NetBeans

Spring and Spring Beans

COM

CLR and .NET

OSGi and Eclipse

Hadoop Map/Reduce



Advanced Programming Techniques

Generic Programming

— Java Generics

— C++ templates

— C# Generics

— Scala generics

Lambda Calculus and Functional Programming
— Haskell basics

— Type classes and Monads

— Metaprogramming

Functional Programming in Java 8
— Lambdas

— Stream API

Scripting languages and Python



Selected Advanced Concepts in
Programming Language

Overloading and Type Classes in Haskell
Closures vs Delegates in CLI

Algebraic data types and Active patterns in F#
Associative arrays in scripting languages
Ownership and borrowing in Rust

Extensions in Swift



IEEE Spectrum Ranking 2018-2017

Language Rank

1.

© O EN OO R~ EL DN

S O O 'y
g A~ W N = O

Python
C++

Java

C

C#

PHP

R
JavaScript
Go

. Assembly
. Matlab

. Scala

. Ruby

. HTML

. Arduino

Types

& s
njm=E

S0
mjm=E

S0

v

Spectrum Ranking

100.0
99.7
97.5
96.7
89.4
84.9
82.9
82.6
76.4
741
72.8
721
714
71.2

69.0

Spectrum Ranking

100.0
99.7
99.4
97.4
88.8
88.8
86.2
82.3
77.2
76.5
74.4
73.9
73.4
70.4

70.0



IEEE Spectrum Ranking 2017-2016

Language Rank
1. Python

2. C

Java

C++

R

C#
JavaScript
PHP

0 ®© BN O RO A RO

Go

10. Swift

11. Arduino
12. Ruby

13. Assembly
14. Matlab
15. Scala

&
]

i

@ [

Spectrum Ranking

100.0
99.7
99.4
97.4
88.8
88.8
86.2
82.3
77.2
76.5
74.4
73.9
73.4
70.4

70.0

Spectrum Ranking

100.0
98.2
98.1
96.0
88.2
86.8
83.3
82.6
75.2
721
71.0
70.8
69.5
69.5

67.9



