
301AA	-	Advanced	Programming	

Lecturer:	Andrea	Corradini		 		
andrea@di.unipi.it	

h;p://pages.di.unipi.it/corradini/	
	

Course	pages:	
h;p://pages.di.unipi.it/corradini/Dida@ca/AP-18/	

		
	

AP-2018-24:	RUST	

The	RUST	programming	language	

•  Brief	history		
•  Overview	of	main	concepts	
•  Avoiding	Aliases	+	Mutable	
•  Ownership	and	borrowing	
•  Traits,	generics	and	inheritance	
•  (Slides	by	Haozhong	Zhang)	

2	

Brief	History	
•  Development	started	in	2006	by	Graydon	Hoare	
at	Mozilla.	

•  Mozilla	sponsored	RUST	since	2009,	and	
announced	it	in	2010.	

•  In	2010	shiZ	from	the	ini[al	compiler	in	OCaml	to	
a	self-hos[ng	compiler	wri;en	in	Rust,	rustc:	it	
successfully	compiled	itself	in	2011.	

•  rustc	uses	LLVM	as	its	back	end.	
•  Most	loved	programming	language	in	the	Stack	
Overflow	annual	survey	of	2016,	2017	and	2018.	

3	

On	RUST	syntax	

•  Rust	is	a	systems	programming	language	with	a	focus	
on	safety,	especially	safe	concurrency,	suppor[ng	both	
func[onal	and	impera[ve	paradigms.		

•  Concrete	syntax	similar	to	C	and	C++	(blocks,	if-
else,	while,	for),	match	for	pa;ern	matching	

•  Despite	the	superficial	resemblance	to	C	and	C++,	the	
syntax	of	Rust	in	a	deeper	sense	is	closer	to	that	of	the	
ML	family	of	languages	as	well	as	the	Haskell	
language.	

•  Nearly	every	part	of	a	func[on	body	is	an	expression	
(including	if-else).	

	
4	

Memory	safety	
•  Designed	to	be	memory	safe:	

–  No	null	pointers	
–  No	dangling	pointers	
–  No	data	races	

•  Data	values	can	only	be	ini[alized	through	a	fixed	set	of	
forms,	requiring	their	inputs	to	be	already	ini[alized.	
Compile	[me	error	if	any	branch	of	code	fails	to	assign	a	
value	to	the	variable.		

•  Rust	core	library	provides	an	op6on	type,	which	can	be	
used	to	test	if	a	pointer	has	Some	value	or	None.	

•  Rust	also	introduces	syntax	to	manage	life6mes,	and	the	
compiler	reasons	about	these	through	its	borrow	checker.	

5	

Memory	management	
•  No	garbage	collec[on.	Determinis[c	
management	of	resources,	with	very	low	
overhead.		

•  Memory	and	other	resources	managed	through	
Resource	Acquisi[on	Is	Ini[aliza[on	(RAII),	with	
op[onal	reference	coun[ng.		

•  Rust	favors	stack	alloca[on	(default).		No	implicit	
boxing.		

•  Safety	in	the	use	of	pointers/references/aliases	is	
guaranteed	by	the	Ownership	System	and	by	the	
compila[on	phase	of	borrowing	checking.	

	
6	

Ownership	System	
•  Rust	has	an	ownership	system,	based	on	concepts	of	

ownership,	borrowing	and	life[mes	
•  Data	are	immutable	by	default,	and	declared	mutable	using	
mut.	

•  All	values	have	a	unique	owner	where	the	scope	of	the	
value	is	the	same	as	the	scope	of	the	owner.	

•  A	resource	can	be	borrowed	from	its	owner	(via	
assignment	or	parameter	passing)	according	to	some	rules.		

•  Values	can	be	passed	by	immutable	reference	using	&T,	by	
mutable	reference	using	&mut T	or	by	value	using	T.		

•  At	all	[mes,	there	can	either	be	mul[ple	immutable	
references	or	one	mutable	reference	to	a	resource.	This	is	
checked	sta[cally.	

7	

Types	and	polymorphism	
•  Type	inference,	for	variables	declared	with	the	let	

keyword.	
•  Classes	are	defined	using	structs	for	fields	and	

implementa[ons	(impl)	for	methods.	
•  No	inheritance	in	RUST!		è	Pushing	composi6on	over	

inheritance	
•  The	type	system	supports	traits,	corresponding	to	Haskell	

type	classes,	for	ad	hoc	polymorphism.	
•  Traits	can	contain	abstract	methods	or	also	concrete	

(default)	methods.	They	cannot	declare	fields.		
•  Support	for	bounded	universal	explicit	polymorphism	with	

generics,	as	in	Java,	where	bounds	are	one	or	more	traits.	

	
8	

Digression:	The	diamond	problem	of	
mul[ple	inheritance	

•  Two	classes	B	and	C	inherit	from	A,	and	class	D	
inherits	from	both	B	and	C.	If	there	is	a	method	
in	A	that	B	and	C	have	overridden,	and	D	does	
not	override	it,	then	which	version	of	the	
method	does	D	inherit:	that	of	B,	or	that	of	C?		

•  Java	8	introduces	default	methods	on	interfaces.	
If	A,B,C	are	interfaces,	B,C	can	each	provide	a	
different	implementa[on	to	an	abstract	method	
of	A,	causing	the	diamond	problem.		

•  Either	class	D	must	reimplement	the	method,	or	
the	ambiguity	will	be	rejected	as	a	compile	
error.	

9	

Generic	func[ons	
•  Generic	func[ons	may	have	the	generic	type	of	parameter	

bound	by	one	or	more	traits.	Within	such	a	func[on,	the	
generic	value	can	only	be	used	through	those	traits.	

•  Therefore	a	generic	func[on	can	be	type-checked	when	
defined	(as	in	Java,	unlike	C++	templates).		

•  However,	implementaFon	of	Rust	generics	similar	to	typical	
implementa[on	of	C++	templates:	a	separate	copy	of	the	
code	is	generated	for	each	instan[a[on.		

•  This	is	called	monomorphiza6on	and	contrasts	with	the	
type	erasure	scheme	of	Java.		
–  Pros:	op[mized	code	for	each	specific	use	case	
–  Conss:	increased	compile	[me	and	size	of	the	resul[ng	binaries.		

	
10	

An Introduc+on

to
Rust Programming Language

	
Haozhong	Zhang

Jun	1,	2015

Slides	freely	adapted	by	the	lecturer	

As a programming language …

• Rust	is	a	system	programming	language	barely	on	
the	hardware.	
• No	runFme	requirement	(eg.	GC/Dynamic	Type/…)	
• More	control	(over	memory	alloca[on/destruc[on/…)	
• …	

fn main() { !
 println!(“Hello, world!”); !
} !

More than that …

C/C++

more	control,	
less	safety

Haskell/Python

less	control,	
more	safety

more	control,	
more	safety	

Rust

Rust overview

Performance,	as	with	C	
•  Rust	compila[on	to	object	code	for	bare-metal	performance	

But,	supports	memory	safety	
•  Programs	dereference	only	previously	allocated	pointers	that	have	not	
been	freed	
•  Out-of-bound	array	accesses	not	allowed	

With	low	overhead	
•  Compiler	checks	to	make	sure	rules	for	memory	safety	are	followed	
•  Zero-cost	abstrac[on	in	managing	memory	(i.e.	no	garbage	collec[on)	

Via	
•  Advanced	type	system	
•  Ownership,	borrowing,	and	life[me	concepts	to	prevent	memory	
corrup[on	issues	

But	at	a	cost	
•  Cogni[ve	cost	to	programmers	who	must	think	more	about	rules	for	
using	memory	and	references	as	they	program	

Rust and typing

Primi[ve	types	
• bool
• char (4-byte	unicode)
• i8/i16/i32/i64/isize
• u8/u16/u32/u64/usize
• f32/f64

Separate	bool	type	
• C	overloads	an	integer	to	get	booleans	
• Leads	to	varying	interpreta[ons	in	API	calls	

•  True,	False,	or	Fail?	1,	0,	-1?	
•  Misinterpreta[ons	lead	to	security	issues	
•  Example:	PHP	strcmp	returns	0	for	both	equality	*and*	failure!	

Numeric	types	specified	with	width	
• Prevents	bugs	due	to	unexpected	promo[on/coercion/
rounding	

By	default,	Rust	variables	are	immutable	
• Usage	checked	by	the	compiler	

mut	is	used	to	declare	a	resource	as	mutable.
	

Immutability by default

fn main() {
 let mut a: i32 = 0;
 a = a + 1;
 println!("{}" , a);
} !

rustc 1.14.0 (e8a012324 2016-12-16)
error[E0384]: re-assignment of immutable variable `a`
 --> <anon>:3:5
 |
2 | let a: i32 = 0;
 | - first assignment to `a`
3 | a = a + 1;
 | ^^^^^^^^^ re-assignment of immutable variable

error: aborting due to previous error

rustc 1.14.0 (e8a012324 2016-12-16)
1
Program ended.

Example: C is good
Lightweight,	low-level	control	of	memory	

typedef struct Dummy { int a; int b; } Dummy;

void foo(void) {
 Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
 ptr->a = 2048;
 free(ptr);
} !

ptr

.a

.b

Stack Heap

Precise	memory	layout

Lightweight	reference

DestrucFon

.a	=	2048

Example: C is not so good
typedef struct Dummy { int a; int b; } Dummy;

void foo(void) {
 Dummy *ptr = (Dummy *) malloc(sizeof(struct Dummy));
 Dummy *alias = ptr;
 free(ptr);
 int a = alias.a;
 free(alias);
} !

ptr

alias

.a

.b

Stack Heap

Dangling	Pointer

Use	aIer	free

Double	free
Aliasing MutaFon

Other problems with aliasing + muta+onProblems*with*aliases:

•  Make*programs*more*confusing*
•  May*disallow*some*compiler’s*op;miza;ons*

•  Cause*for*a*long*;me*of*inefficiency*of*C*
versus*FORTRAN*compilers*

* 14*

int a, b, *p, *q;
 ...

a = *p; /* read from the variable referred to by p*/

q = 3; / assign to the variable referred to by q */

b = *p; /* read from the variable referred to by p */

Solved by managed languages

Java,	Python,	Ruby,	C#,	Scala,	Go...	
• Restrict	direct	access	to	memory	
• Run-[me	management	of	memory	via	periodic	garbage	
collec[on	
• No	explicit	malloc	and	free,	no	memory	corrup[on	issues	
• But	

•  Overhead	of	tracking	object	references	
•  Program	behavior	unpredictable	due	to	GC	(bad	for	real-[me	systems)	
•  Limited	concurrency	(global	interpreter	lock	typical)	
•  Larger	code	size	
•  VM	must	oZen	be	included	
•  Needs	more	memory	and	CPU	power	(i.e.	not	bare-metal)	

Requirements for system programs

Must	be	fast	and	have	minimal	run[me	overhead	
	
Should	support	direct	memory	access,	but	be	
memory	-safe	

Rust’s Solu+on: Zero-cost Abstrac+on
struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res: Box<Dummy> = Box::new(Dummy { !
 a: 0, !
 b: 0 !
 }); !
 res.a = 2048; !
} !

res

.a	=	0

.b	=	0

Stack Heap

.a	=	2048

Variable	binding

Memory	allocaFon

Resource	owned	by	res	is	freed	automaFcally

Side Slide: Type Inference
struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res: Box<Dummy> = Box::new(Dummy { !
 a: 0, !
 b: 0 !
 }); !
 res.a = 2048; !
} !

Rust’s Solu+on: Ownership & Borrowing

	
Compiler	enforces:	
• Every	resource	has	a	unique	owner.	
• Others	can	borrow	the	resource	from	its	owner.	
• Owner	cannot	free	or	mutate	its	resource	while	it	is	
borrowed.

Aliasing MutaFon

No	need	for	run[me	 Memory	safety Data-race	freedom

Ownership
struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res = Box::new(Dummy { !
 a: 0, !
 b: 0 !
 }); !
} !

res

.a	=	0

.b	=	0

Stack Heap

owns

res	is	out	of	scope	and	its	resource	is	freed	automaFcally

Ownership: Life+me

• Life[me	is	determined	and	checked	sta[cally.	
• Life[mes	are	mostly	inferred,	but	can	be	made	
explicit	using	generics

struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res: Box<Dummy>; !
 { !
 res = Box::new(Dummy {a: 0, b: 0}); !
 } !
 res.a = 2048; !
} !

LifeFme	that	res		
owns	the	resource.

Compiling	Error:	res	no	longer	owns	the	resource

Ownership: Unique Owner
struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res = Box::new(Dummy { !
 a: 0, !
 b: 0 !
 }); !
 take(res); !
 println!(“res.a = {}”, res.a); !
} !
!
!
!
fn take(arg: Box<Dummy>) { !
} !

Ownership	is	moved	from	res	to	arg

arg	is	out	of	scope	and	the	resource	is	freed	automaFcally

Compiling	Error!

Aliasing MutaFon

Immutable/Shared Borrowing (&)
struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res = Box::new(Dummy{ !
 a: 0, !
 b: 0 !
 }); !
 take(&res); !
 res.a = 2048; !
} !
!
!
!
fn take(arg: &Box<Dummy>) { !
 arg.a = 2048; !
} !

Resource	is	immutably	borrowed	by	arg	from	res

Resource	is	sFll	owned	by	res.	No	free	here.

Resource	is	returned	from	arg	to	res

Aliasing MutaFon

Compiling	Error:	Cannot	mutate	via		
an	immutable	reference

Immutable/Shared Borrowing (&)

• Read-only	sharing

struct Dummy { a: i32, b: i32 } !
 !
fn foo() { !
 let mut res = Box::new(Dummy{a: 0, b: 0}); !
 { !
 let alias1 = &res; !
 let alias2 = &res; !
 let alias3 = alias2; !
 res.a = 2048; !
 } !
 res.a = 2048; !
} !

Mutable Borrowing (&mut)
Aliasing MutaFon struct Dummy { a: i32, b: i32 } !

 !
fn foo() { !
 let mut res = Box::new(Dummy{a: 0, b: 0}); !
!
 take(&mut res); !
 res.a = 4096; !
!
 let borrower = &mut res; !
 let alias = &mut res; !
} !
!
fn take(arg: &mut Box<Dummy>) { !
 arg.a = 2048; !
} !

Mutably	borrowed	by	arg	from	res

Returned	from	arg	to	res

MulFple	mutable	borrowings	
are	disallowed

Concurrency & Data-race Freedom
struct Dummy { a: i32, b: i32 } !
!
fn foo() { !
 let mut res = Box::new(Dummy {a: 0, b: 0}); !
!
 std::thread::spawn(move || { !
 let borrower = &mut res; !
 borrower.a += 1; !
 }); !
!
 res.a += 1; !
} !

Error:	res	is	being	mutably	borrowed

res	is	mutably	borrowed

Spawn	a	new	thread

Unsafe
Life	is	hard.

Mutably Sharing

• Mutably	sharing	is	inevitable	in	the	real	world.	
• Example:	mutable	doubly	linked	list	

prev

next

prev

next

prev

next

struct Node { !
 prev: option<Box<Node>>, !
 next: option<Box<Node>> !
} !

Rust’s Solu+on: Raw Pointers

• Compiler	does	NOT	check	the	memory	safety	of	
most	opera[ons	wrt.	raw	pointers.	
• Most	opera[ons	wrt.	raw	pointers	should	be	
encapsulated	in	a	unsafe	{}	syntac[c	structure.	

prev

next

prev

next

prev

next

struct Node { !
 prev: option<Box<Node>>, !
 next: *mut Node !
} ! Raw	pointer

Rust’s Solu+on: Raw Pointers

let a = 3; !
!
unsafe { !
 let b = &a as *const u32 as *mut u32; !
 *b = 4; !
} !
!
println!(“a = {}”, a);!

I	know	what	I’m	doing

Print	“a	=	4”

Foreign Func+on Interface (FFI)

• All	foreign	func[ons	are	unsafe.
extern { !
 fn write(fd: i32, data: *const u8, len: u32) -> i32; !
} !
!
fn main() { !
 let msg = b”Hello, world!\n”; !
 unsafe { !
 write(1, &msg[0], msg.len()); !
 } !
} !

Other Goodies
Enums,	Pa;ern	Match,	Generic,	Traits,	Tests,	…	

Enums

• First-class	
• Instead	of	integers	(C/C++)	

• Structural	
• Parameters	
• Replacement	of	union	in	C/C++

Enums

enum RetInt { !
 Fail(u32), !
 Succ(u32) !
} !
!
fn foo_may_fail(arg: u32) -> RetInt { !
 let fail = false; !
 let errno: u32; !
 let result: u32; !
 ... !
 if fail { !
 RetInt::Fail(errno) !
 } else { !
 RetInt::Succ(result) !
 } !
} !

Enums: No Null Pointers

enum std::option::Option<T> { !
 None, !
 Some(T) !
} !
!
struct SLStack { !
 top: Option<Box<Slot>> !
} !
!
struct Slot { !
 data: Box<u32>, !
 prev: Option<Box<Slot>> !
} !

PaVern Match

let x = 5; !
!
match x { !
 1 => println!(“one”), !
 2 => println!(“two”), !
 3|4 => println!(“three or four”), !
 5 ... 10 => println!(“five to ten”), !
 e @ 11 ... 20 => println!(“{}”, e); !
 _ => println!(“others”), !
} !

Compiler	enforces	the	matching	is	complete

PaVern Match

enum std::option::Option<T> { !
 None, !
 Some(T) !
} !
!
struct SLStack { !
 top: Option<Box<Slot>> !
} !
!
fn is_empty(stk: &SLStack) -> bool { !
 match stk.top { !
 None => true, !
 Some(..) => false, !
 } !
} !

Generic

struct SLStack { !
 top: Option<Box<Slot>> !
} !
!
struct Slot { !
 data: Box<u32>, !
 prev: Option<Box<Slot>> !
} !
!
fn is_empty(stk: &SLStack) -> bool { !
 match stk.top { !
 None => true, !
 Some(..) => false, !
 } !
} !

Generic

struct SLStack<T> { !
 top: Option<Box<Slot<T>>> !
} !
!
struct Slot<T> { !
 data: Box<T>, !
 prev: Option<Box<Slot<T>>> !
} !
!
fn is_empty<T>(stk: &SLStack<T>) -> bool { !
 match stk.top { !
 None => true, !
 Some(..) => false, !
 } !
} !

Traits

• More	generic	

• Typeclass	in	Haskell	

Traits
trait Stack<T> { !

 fn new() -> Self; !
 fn is_empty(&self) -> bool; !
 fn push(&mut self, data: Box<T>);!
 fn pop(&mut self) -> Option<Box<T>>;!
} !
!
impl<T> Stack<T> for SLStack<T> { !
 fn new() -> SLStack<T> { !
 SLStack{ top: None } !
 } !
!
 fn is_empty(&self) -> bool { !
 match self.top { !
 None => true, !
 Some(..) => false, !
 } !
 } !
} !

Type	implemented	this	trait

Object	of	the	type		
implemenFng	this	trait

Using Traits for Bounded Polymorphism

trait Stack<T> { !
 fn new() -> Self; !
 fn is_empty(&self) -> bool; !
 fn push(&mut self, data: Box<T>);!
 fn pop(&mut self) -> Option<Box<T>>;!
} !
!
fn generic_push<T, S: Stack<T>>(stk: &mut S, !
 data: Box<T>) { !
 stk.push(data); !
} !
!
fn main() { !
 let mut stk = SLStack::<u32>::new(); !
 let data = Box::new(2048); !
 generic_push(&mut stk, data); !
} !

Mul+ple traits as bounds

trait Clone { !
 fn clone(&self) -> Self; !
} !
!
impl<T> Clone for SLStack<T> { !
 ... !
} !
!
fn immut_push<T, S: Stack<T>+Clone>(stk: &S, data: Box<T>) -> S
{ !
 let mut dup = stk.clone(); !
 dup.push(data); !
 dup !
} !
!
fn main() { !
 let stk = SLStack::<u32>::new(); !
 let data = Box::new(2048); !
 let stk = immut_push(&stk, data); !
} !

Learning & Development
Resources

Official Resources

• Rust	website:	h;p://rust-lang.org/	
• Playground:	h;ps://play.rust-lang.org/	
• Guide:	h;ps://doc.rust-lang.org/stable/book/	
• Documents:	h;ps://doc.rust-lang.org/stable/	
• User	forum:	h;ps://users.rust-lang.org/	
• Dev	forum:	h;ps://internals.rust-lang.org/	
• Source	code:	h;ps://github.com/rust-lang/rust	
• IRC:	server:	irc.mozilla.org,	channel:	rust	
• Cargo:	h;ps://crates.io/	

3rd Party Resources

• Rust	by	example:	h;p://rustbyexample.com/	
• Reddit:	h;ps://reddit.com/r/rust	
• Stack	Overflow:	
h;ps://stackoverflow.com/ques[ons/tagged/rust	

Academic Research

• h;ps://doc.rust-lang.org/stable/book/academic-
research.html	

Projects

• rustc:	Rust	compiler	
• h;ps://github.com/rust-lang/rust	

• Cargo:	Rust’s	package	manager	
• h;ps://github.com/rust-lang/cargo	

• Servo:	Experimental	web	browser	layout	engine	
• h;ps://github.com/servo/servo	

• Piston:	A	user	friendly	game	engine	
• h;ps://github.com/PistonDevelopers/piston	

• Iron:	An	extensible,	concurrent	web	framework	
• h;ps://github.com/iron/iron	

• On	Github	
• h;ps://github.com/trending?l=rust	

Development Environment

• MicrosoZ	Visual	Studio	
• Rust	plugin:
	h;ps://visualstudiogallery.msdn.microsoZ.com/
c6075d2f-8864-47c0-8333-92f183d3e640	

	
• Emacs	
•  rust-mode:	h;ps://github.com/rust-lang/rust-mode	
•  racer:	h;ps://github.com/phildawes/racer	
• flycheck-rust:	h;ps://github.com/flycheck/flycheck-rust	

• Vim	
•  rust.vim:	h;ps://github.com/rust-lang/rust.vim	
•  racer:	h;ps://github.com/rust-lang/rust.vim	

