301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it

http://pages.di.unipi.it/corradini/

Course pages:
http://pages.di.unipi.it/corradini/Didattica/AP-18/

AP-2018-24: RUST

The RUST programming language

Brief history

Overview of main concepts
Avoiding Aliases + Mutable
Ownership and borrowing
Traits, generics and inheritance
(Slides by Haozhong Zhang)

Brief History

Development started in 2006 by Graydon Hoare
at Mozilla.

Mozilla sponsored RUST since 2009, and
announced it in 2010.

In 2010 shift from the initial compiler in OCaml to
a self-hosting compiler written in Rust, rustc: it
successfully compiled itself in 2011.

rustc uses LLVM as its back end.

Most loved programming language in the Stack
Overflow annual survey of 2016, 2017 and 2018.

On RUST syntax

Rust is a systems programming language with a focus
on safety, especially safe concurrency, supporting both
functional and imperative paradigms.

Concrete syntax similar to C and C++ (blocks, i f-
else,while, for), match for pattern matching

Despite the superficial resemblance to C and C++, the
syntax of Rust in a deeper sense is closer to that of the
ML family of languages as well as the Haskell
language.

Nearly every part of a function body is an expression
(including if-else).

Memory safety

Designed to be memory safe:
— No null pointers

— No dangling pointers

— No data races

Data values can only be initialized through a fixed set of
forms, requiring their inputs to be already initialized.
Compile time error if any branch of code fails to assign a
value to the variable.

Rust core library provides an option type, which can be
used to test if a pointer has Some value or None.

Rust also introduces syntax to manage lifetimes, and the
compiler reasons about these through its borrow checker.

Memory management

No garbage collection. Deterministic
management of resources, with very low
overhead.

Memory and other resources managed through
Resource Acquisition Is Initialization (RAIl), with
optional reference counting.

Rust favors stack allocation (default). No implicit
boxing.

Safety in the use of pointers/references/aliases is
guaranteed by the Ownership System and by the
compilation phase of borrowing checking.

Ownership System

Rust has an ownership system, based on concepts of
ownership, borrowing and lifetimes

Data are immutable by default, and declared mutable using
mut.

All values have a unique owner where the scope of the
value is the same as the scope of the owner.

A resource can be borrowed from its owner (via
assignment or parameter passing) according to some rules.

Values can be passed by immutable reference using &T, by
mutable reference using &mut T or by value using T.

At all times, there can either be multiple immutable
references or one mutable reference to a resource. This is
checked statically.

Types and polymorphism

Type inference, for variables declared with the let
keyword.

Classes are defined using structs for fields and
implementations (impl) for methods.

No inheritance in RUST! =2 Pushing composition over
inheritance

The type system supports traits, corresponding to Haskell
type classes, for ad hoc polymorphism.

Traits can contain abstract methods or also concrete
(default) methods. They cannot declare fields.

Support for bounded universal explicit polymorphism with
generics, as in Java, where bounds are one or more traits.

Digression: The diamond problem of
multiple inheritance

e Two classes B and C inherit from A, and class D
inherits from both B and C. If there is a method
in A that B and C have overridden, and D does A
not override it, then which version of the /4 b\
method does D inherit: that of B, or that of C?

e Java 8 introduces default methods on interfaces.

different implementation to an abstract method
of A, causing the diamond problem.

* Either class D must reimplement the method, or
the ambiguity will be rejected as a compile
error.

B C
If A,B,C are interfaces, B,C can each provide a b\ /4

D

Generic functions

Generic functions may have the generic type of parameter
bound by one or more traits. Within such a function, the
generic value can only be used through those traits.

Therefore a generic function can be type-checked when
defined (as in Java, unlike C++ templates).

However, implementation of Rust generics similar to typical
implementation of C++ templates: a separate copy of the
code is generated for each instantiation.

This is called monomorphization and contrasts with the
type erasure scheme of Java.

— Pros: optimized code for each specific use case

— Conss: increased compile time and size of the resulting binaries.

®

An Introduction
to
Rust Programming Language

Haozhong Zhang
Jun 1, 2015

Slides freely adapted by the lecturer

As a programming language ...

fn main() {
println!(“Hello, world!”);
I3

*Rust is a system programming language barely on

the :
*No requirement (eg. GC/Dynamic Type/...)
* More (over memory allocation/destruction/...)

®

More than that ...

C/C++ Haskell/Python

more control, less control,

less safety more safety
Rust

more control,
more safety

Rust overview

Performance, as with C
* Rust compilation to object code for bare-metal performance

But, supports memory safety
* Programs dereference only previously allocated pointers that have not
been freed
e Qut-of-bound array accesses not allowed

With low overhead
* Compiler checks to make sure rules for memory safety are followed

e Zero-cost abstraction in managing memory (i.e. no garbage collection)
Via
* Advanced type system

* Ownership, borrowing, and lifetime concepts to prevent memory
corruption issues

But at a cost
* Cognitive cost to programmers who must think more about rules for
using memory and references as they program

®

Rust and typing

Primitive types
* bool
e char (4-byte unicode)
e18/116/132/1i64/isize
e u8/ulo/u32/u64d/usize
e £32/f064

Separate bool type
* Coverloads an integer to get booleans

* Leads to varying interpretations in API calls
* True, False, or Fail? 1, 0, -17?
* Misinterpretations lead to security issues
* Example: PHP strcmp returns O for both equality *and* failure!

Numeric types specified with width

* Prevents bugs due to unexpected promotion/coercion/
rounding

®

Immutability by default

By default, Rust variables are immutable
* Usage checked by the compiler

mut is used to declare a resource as mutable.

* fn main() { fn main() {
let a: 32 = 03 let mut a: 132 = 0;
a =a+ 13 a =a + 1;
println!(”{}" , a); println! ("{}" , a);

} }

error [E0384]: re-assignment of immutable variable “a°
Program ended.

--> <anon>:3:5

2 | let a: 132 = 0;

| - first assignment to “a’
3 a=a+ 1;

|

AAAAAAAAA

re-assignment of immutable variable
error: aborting due to previous error @

Example: Cis good

Lightweight, low-level control of memory
typedef struct Dummy { int a; int b; } Dummy;

void foo (void) | / Precise memory layout

Dummy *ptr (Dummy *) malloc (sizeof (struct Dummy)) ;
ptr->a = 2048; €= . .
free (ptr) ; — Lightweight reference
})
\ Destruction

Stack Heap @

JUL

Example: Cis not so good

typedef struct Dummy { int a; int b; } Dummy;

void foo (void) {

Dummy *ptr = (Dummy *) malloc (sizeof (struct Dummy)) ;
Dummy *alias = ptr;
free (ptr);

int a = alias.a;«— Use after free

free(alias);ﬂh_~~~~~~~~
J Double free

Aliasing 4= Mutation

Stack Heap

Other problems with aliasing + mutation

 Make programs more confusing
 May disallow some compiler’s optimizations

int a, b, *p/ *q;
a = *p; /* read from the variable referred to by p*/

q = 3; / assign to the variable referred to by g */

b = *p; /* read from the variable referred to by p */

e Cause for a long time of inefficiency of C
versus FORTRAN compilers

Solved by managed languages

Java, Python, Ruby, C#, Scala, Go...
 Restrict direct access to memory

* Run-time management of memory via periodic garbage
collection

* No explicit malloc and free, no memory corruption issues
* But

* Overhead of tracking object references

Program behavior unpredictable due to GC (bad for real-time systems)
Limited concurrency (global interpreter lock typical)

Larger code size

VM must often be included

Needs more memory and CPU power (i.e. not bare-metal)

®

Requirements for system programs

Must be fast and have minimal runtime overhead

Should support direct memory access, but be
memory -safe

Rust’s Solution: Zero-cost Abstraction

struct Dummy { a: i32, b: i32 }

fn foo() { r—Memory allocation

—> let mut res: Box<Dummy> = Box::new(Dummy {

a: 0,
Variable binding—J b: @

});
res.a = 2048;

) }
D Resource owned by res is freed automatically

Stack Heap @

Side Slide: Type Inference

struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res:—Box<Dummy>—= Box::ne

a:
b:

});

(Dummy {

’

o =

res.a = 2048;

Rust’s Solution: Ownership & Borrowing

Gositio ¥ Maeation
Compiler enforces:
* Every resource has a unique
* Others can the resource from its owner.

e Owner cannot free or mutate its resource while it is
borrowed.

= | T~

No need for runtime Memory safety Data-race freedom

®

Ownership

struct Dummy { a: i32, b: i32 }

fn foo() {
—> let mut res = Box::new(Dummy {
a: 0,
b: 0
I
) }

“—— res is out of scope and its resource is freed automatically

Stack Heap @

Ownership: Lifetime
struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res: Box<Dummy>;

{

¥
res.a = 2048;

-

Compiling Error: res no longer owns the resource

Lifetime res res = Box::new(Dummy {a: 0, b: 0});

e Lifetime is determined and checked statically.

e Lifetimes are mostly inferred, but can be made
explicit using generics

®

Ownership: Unique Owner

struct Dummy { a: 132, b: i32 } Audsiag 4 Mutation
fn foo() {
let mut res = Box::new(Dummy {
a: 0,
b: 0

});

take(res);

—>
—> } printlp!(“res.a = {}"”, res.a); «— Compiling Error!

Ownership is moved from res to arg

fn take(arg: Box<Dummy>) {

= }

arg is out of scope and the resource is freed automatically

®

Immutable/Shared Borrowing (&)

struct Dummy { a: i32, b: i32 } Aliasing 4= Md¥a®ion
fn foo() {

let mut res = Box::new(Dummy<{
a: 0,
b: 0
F);
—> take(&res);
—> res.a =/2048;
’ R s returned t
saource is returned from qgrg to res
RésourceSis /mmL/lc“aObly%grrowed by arg from res
fn take(arg: &Box<Dummy>) { compiling Error: Cannot mutate via

.a = 2048; _
: } i) an immutable reference
p -
Resource is still owned by res. No free here.

®

Immutable/Shared Borrowing (&)

struct Dummy { a: i32, b: i32 }

fn foo() {

let mut res = Box::new(Dummy{a: 0, b: 0});
{
let aliasl = &res;
let alias?2 = &res;
let alias3 = alias2?;
resa——= 20485
I
}

* Read-only sharing

Mutable Borrowing (& mut)

struct Dummy { a: i32, b: i32 } Ashg 4= Mutation

fn foo() {
let mut res = Box::new(Dummy{a: @, b: 0});

take(&mut res);
res.a = 4096;) Mutably borrowed by arg from res

let borrower/= &mut res; Multiple mutable borrowings
B L = &mutres; ;
letabtias “ are disallowed

+
Returned from arg to res

fn take(arg: &mut Box<Dummy>) {
arg.a = 2048,
I3

Concurrency & Data-race Freedom

struct Dummy { a: i32, b: i32 }

fn foo() {
let mut res = Box::new(Dummy {a: 0, b: 0});
std::thread::spawn(move || {
let borrower = &mut res;
borrower.a += 1,; res
});

\ res.a += 1; <= Error: res is being mutably borrowed

®

Unsafe

Mutably Sharing

* Mutably sharing is in the real world.
* Example: mutable doubly linked list

struct Node {
prev: option<Box<Node>>,
next: option<Box<Node>>

}

Rust’s Solution: Raw Pointers

struct Node {
prev: option<Box<Node>>,
next: smut Node {

) Raw pointer

* Compiler does NOT check the memory safety of
most operations wrt. raw pointers.

* Most operations wrt. raw pointers should be
encapsulated in a syntactic structure.

Rust’s Solution: Raw Pointers

let a = 3;

unsafe {

let b = & as *xconst u32 as xmut u32;
*xb = 4;
}

println!(“a = {}", a);

Foreign Function Interface (FFl)

* All foreign functions are unsafe.

extern {
fn write(fd: i32, data: *const u8, len: u32) —> i32;
¥

fn main() {
let msg = b"Hello, world!\n”;
unsafe {
write(1, &msgl@], msg.len());
}

Other Goodies

Enums, Pattern Match, Generic, Traits, Tests, ...

Enums

 First-class
* Instead of integers (C/C++)

e Structural

* Parameters
* Replacement of union in C/C++

Enums

enum RetInt {
Fail(u32),
Succ(u32)
}

fn foo_may_fail(arg: u32) —> RetInt {
let fail = false;
let errno: u32;
let result: u32;

if fail {

RetInt::Fail(errno)
} else {

RetInt::Succ(result)
}

Enums: No Null Pointers

enum std::option::0ption<T> |
None,
Some(T)

s

struct SLStack {
top: Option<Box<Slot>>
I3

struct Slot {
data: Box<u32>,
prev: Option<Box<Slot>>

Pattern Match

let x = 5;
match x {
1 => println!(“one”),
2 => println!(“two”),
3|4 => println!(“three or four”),

5 ... 10 => println!(“five to ten”),
e @11 ... 20 => println!(“{}", e);
=> println!(“others”),

Pattern Match

enum std::option::0ption<T> |
None,
Some(T)

s

struct SLStack {
top: Option<Box<Slot>>
I3

fn is_empty(stk: &SLStack) —> bool {
match stk.top {
None => true,
Some(..) => false,

Generic

struct SLStack {
top: Option<Box<Slot>>
I3

struct Slot {
data: Box<u32>,
prev: Option<Box<Slot>>

}

fn is_empty(stk: &SLStack) —> bool {
match stk.top {
None => true,
Some(..) => false,

Generic

struct SLStack<T> {
top: Option<Box<Slot<T>>>
5

struct Slot<T> {
data: Box<T>,
prev: Option<Box<Slot<T>>>

}

fn is_empty<T>(stk: &SLStack<T>) —> bool {
match stk.top {
None => true,
Some(..) => false,

Tralts

* More generic

* Typeclass in Haskell

Tralts

trait
fn
fn
fn
fn
¥

Stack<T> {

new() — ;

is_empty(&) —> bool;
push(&mut self, data: Box<T>);
pop (&mut self) —> Option<Box<T>>;

impl<T> Stack<T> for SLStack<T> {
fn new() — {

}

SLStack{ top: None }

fn is_empty(&) —> bool {

match self.top {
None => true,
Some(..) => false,

Using Traits for Bounded Polymorphism

trait Stack<T> {
fn new() —> Self;
fn is_empty(&self) —> bool;
fn push(&mut self, data: Box<T>);
fn pop(&mut self) —> Option<Box<T>>;

s
fn generic_push<T, >(stk: &mut S,
data: Box<T>) {
stk.push(data);
I3

fn main() {
let mut stk = SLStack::<u32>::new();
let data = Box::new(2048);
generic_push(&mut stk, data);

Multiple traits as bounds

trait Clone {
fn clone(&self) —> Self;
}

impl<T> Clone for SLStack<T> {

¥
fn immut_push<T, >(stk: &5, data: Box<T>) —> S
{
let mut dup = stk.clone();
dup.push(data);
dup
¥

fn main() {
let stk = SLStack::<u32>::new();
let data = Box::new(2048);
let stk = immut_push(&stk, data);

_earning & Development
Resources

Official Resources

* Rust website: http://rust-lang.org/

* Playground: https://play.rust-lang.org/

* Guide: https://doc.rust-lang.org/stable/book/
* Documents: https://doc.rust-lang.org/stable/
e User forum: https://users.rust-lang.org/

* Dev forum: https://internals.rust-lang.org/
e Source code: https://github.com/rust-lang/rust

* |IRC: server: irc.mozilla.org, channel: rust
e Cargo: https://crates.io/

3" Party Resources

* Rust by example: http://rustbyexample.com/
* Reddit: https://reddit.com/r/rust

e Stack Overflow:
https://stackoverflow.com/questions/tagged/rust

Academic Research

* https://doc.rust-lang.org/stable/book/academic-
research.html

Projects

* rustc: Rust compiler
e https://github.com/rust-lang/rust

 Cargo: Rust’s package manager
* https://github.com/rust-lang/cargo

* Servo: Experimental web browser layout engine
* https://github.com/servo/servo

* Piston: A user friendly game engine
e https://github.com/PistonDevelopers/piston

* [ron: An extensible, concurrent web framework
 https://github.com/iron/iron

 On Github
e https://github.com/trending?l=rust

Development Environment

* Microsoft Visual Studio
* Rust plugin:
https://visualstudiogallery.msdn.microsoft.com/
c6075d2f-8864-47c0-8333-92f183d3e640

* Emacs
* rust-mode: https://github.com/rust-lang/rust-mode
* racer: https://github.com/phildawes/racer
e flycheck-rust: https://github.com/flycheck/flycheck-rust

*Vim
e rust.vim: https://github.com/rust-lang/rust.vim
e racer: https://github.com/rust-lang/rust.vim

